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Abstract

A 16-node array of transputers is being installed in an undersea electronics bottle. A passive
backplane IBM-AT compatible processor was previously configured and is the host for the array. The
Experimental Autonomous Vehicle - West (EAVE-West) and Free Swimming Mine Neutralization
Vehicle (FSMNV) will both use this new processor. The array will provide extended capability for future
versions of these systems and their follow-on efforts. Also, the testhed processor is expected to provide
valuable insights concerning undersea application of embeddable multi-computing.

INTRODUCTION

For real-time systems, such as Autonomous Undersea Vehicles (AUVs), the interdependency
between software and hardware determines the real-time response. Real-time response is the most critical
parameter of real-time systems [Shin 87]. For future applications, an AUV system must address this
fundamental problem of real-time response and employ a processing architecture which scales with the
complexity of an AUV mission. Multi-processing architectures provide this capability since more
processors can be added as system complexity increases [Chambers 84].

Expressing parallelism and harnessing processor performance both determine the real-time
performance of a given system. The ability to express the physical world in parallel terms has been
hindered by three decades of experience with sequential machines. Experience with developing
algorithms for real-time multi-processing will help remedy this problem [Patton 85). The real-time
performance of a multi-processor also depends on how it handles the key problems of control, partitioning,
scheduling, synchronization, and memory access [Gajski 85]. These two problems of parallel expression
and performance impact the real-time response of a vehicle system and, consequently, what models of
computation are possible and most appropriate for AUVs. Thus, multi-computing hardware is necessary
for the practical development of multi-computer based AUV system architectures.

The development of the EAVE-West multi-computing AUV testbed is progressing in two stages.
The first stage is the current multi-computing testbed hosted by an IBM-AT compatible computer and
residing in the EAVE-West electronics bottle (figure 1). The next stage will be to develop a fully
reconfigurable multi-computer which directly interfaces with vehicle sensors and actuators (figure 2).
The multiple computer array will possess an algorithm-structured topology determined by each vehicle
mission plan (i.e. mission algorithm). This type of processor, called an Algorithm-Structured Computer
Array/Network, has many advantages for AI and robotics applications [Uhr 84, Uhr 87). With this
architecture, mission algorithms that are specific to a given dive will determine the processing structure
of the AUV system. Thus, ideal configurations become possible.
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A multi-computing testbed provides the opportunity to apply general parallel processing
paradigms to the problem of developing extensible real-time AUV architectures and, thus, develop
paradigms tailored to the real-time needs of AUVs. The following sections discuss the background,
motivation, key problems, testbed configuration and, finally, applications.

BACKGROUND

A technology development program based on in-water testbed demonstrations was initiated at
NOSC in 1977. In 1979 the Experimental Autonomous Vehicle - West (EAVE-West) demonstrated the
concept of a free swimming submersible operating in-water independent of an operator [Heckman 79].
The modular EAVE-West electronics bottles were later repackaged into a compact hydrodynamic vehicle
geometry [Ladd 83]. Recently, the EAVE-West electronics have been packaged into a Free Swimming
Mine Neutralization Vehicle (FSMNV) testbed [Gillcrist 891. Figure 3 is a diagram of the.three free
swimming testbed vehicles. Figure 4 shows the modular electronic components used for each vehicle
configuration.

EAVE-West computing components have evolved and developed with advancing technology.
The initial vehicle computer components pre-dated small form-factored computer busses. In 1982, the
vehicle was upgraded with commercially available STD bus components and later upgraded to an IBM-
PC compatible 8088 CPU. For demonstrating systems designed to automate vehicle operator functions,
an IBM-AT compatible passive backplane computer was packaged into an electronics bottle. The AT
computer provides a flexible testbed for evaluating Artificial Intelligence (A) and Robotics concepts.

Presently, the multi-computer is being embedded in the EAVE-West AT bottle. The architecture ,oes
is a 16-node multi-computer array where the links between nodes are har, 4i, serial communication ,or
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channels. With this type of architecture, recent
advancements in multi-computing hardware/software
can be incorporated into existing NOSC vehicles. Figure ,e D,,,bud-

5 illustrates some example array configurations of this B a C CMi i iJ
new processing architecture.

A NOSC Independent Exploratory c4..

Development (IED) project was initiated in 1984 to
develop an undersea vehicle control software BatteryBottle
architecture which could harness the potentialRer
throughput of such an array of interconnected
computers. The purpose of the project was to
demonstrate the execution of a vehicle mission plan
using a distributable collection of simple independent
processes. The project resulted in a prototype software - oIV/AI
architecture demonstration in 1986 [Durham 87]. The
multi-tasking single CPU system that was demonstrated
was an initial step toward the development of a true FIGURE 4
embedded multi-computing system. The multi-
computing testbed is a realization of the multi- Component Layout
computing hardware for that system.

MOTIVATION FOR DEVELOPING AN
EMBEDDABLE MULTI-COMPUTER oo100000

1-D Pipeline
In the past, Artificial Intelligence (A) tools,

such as Knowledge-Based Systems, have been used to
develop intelligent vehicle controllers. From an Al
perspective, an intelligent vehicle controller is a Real- 2-D Mesh
Time Knowledge Based System (RKBS). Laffey et al.
provide a survey of RKBS applications, and they discuss
the fundamental problems and issues related to such
applications [Laffey 88]. According to Laffey et al., AI
researchers find in real-time domains a new set of
complex problems. These problems include
nonmonotonicity, continuous operation, asynchronous
events, interfacing to an external environment, uncertain 4-D Hyper-Cube
or missing data, high performance, temporal reasoning,
focus of attention, guaranteed response times, and
integration with procedural components.

FIGURE 5
Vehicle systems which rely on RKBS techniques

inherit these problems. Extensible processing Multi-Computing Array Configurations

architectures provide a foundation for solving the most
critical problem of guaranteed response times. Specific architectures tailored to the functional
characteristics of AUVs can be built upon such a processing foundation.

In contrast to RKBSs, supervisory controlled (i.e. telerobotic) systems provide an incremental
approach to autonomy. For a telerobotic system, an operator acts as a supervisor who commands a vehicle
to perform specific automated tasks, such as point-to-point transiting. A vehicle becomes more



autonomous as commands encompass higher levels of
automation. As supervisory control (i.e. telerobotics) is to Autonomous
an extension of teleoperation, autonomy is an extension .
of supervisory control. Figure 6 plots this relationship. I
Antsaklis et al. provide a recent overview of the Supervisory Controlled
literature and fundamental issues for autonomous
vehicle systems [Antsaklis 89].

Teleoperated

Functional characteristics of vehicle
architectures have been observed and widely accepted. 0 Telepresent
Figure 7 is a functional diagram produced from the
DARPA Autonomous Land Vehicle (ALV) [Cliff 86].
Figure 8 is a diagram of the brain [Albus 81]. The Communication Bandwidth
functional structure of an autonomous vehicle and the
structure of the brain are similar. Functionally, every
non-trivial vehicle system has sensors and effectors and FIGURE 6
a "cognitive" process closes the loop. Also, every system Continuum of ROY Capability
encompasses levels of automation (i.e. abstraction).

This effort proposes an additional functional characteristic. An extensible multi-processor is the
only general solution to meeting real-time response requirements for real-time systems (e.g. AUVs) of
continuously increasing complexity. Furthermore, paradigms are needed for developing extensible
multi-processor AUV systems.

An existing paradigm can be applied to AUVs and is illustrated in figure 9 [Patton 85]. Parallel
applications and algorithms are mapped into parallel models of computation and executed on parallel
computing hardware whose structure is determined by the application and corresponding algorithm.
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Figure 10 illustrates a paradigm for
developing mission specific AUVs. Note
that the processes outlined in the triangles of Paralle
figure 10 are applications of the more ..... Noe l
general process illustrated in figure 9. Aignciluns l anguage
General software development utilities
provide a productive environment for Ga
developing a given vehicle system. The ..... Eprssveness.P =IeI.........

AUV utilities provide a productive MOf So Ks)r
environment for specifying a mission plan Ccmnpumnzion Support
(i.e. algorithm); the mission is expressed as
a collection of distributable processes (i.e. Goal:.............
independent software modules), called ency

Parallelsoftware primitives; and, finally, the Arhiftere(s)
primitives are mapped to an array of
processors and executed. The extensible ___________________________________._______j

processing capability of a multi-computing PAM,9
AUV system enables it to maintain real-time FIGURE 9
response for missions of variable
complexity by adding more processors when A Paradigm of Parallel Vehicles
necessary.
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The requirement to respond to an event within a given time period makes real-time applications
unique. To provide and maintain real-time response for systems with increasing complexity, an extensible
multi-processing architecture becomes necessary. A distributable software architecture can be simulated
on a single CPU system, but the real-time performance that can be gained from multiple computer systems
cannot be evaluated. The multi-computing testbed provides the ability to evaluate performance gains.

KEY MULTI-COMPUTING PROBLEMS

At least two types of problems exist for embedded AUV multi-computing applications. Thinking
and expressing parallelism is an unfamiliar process and, thus, has its own problems. The second type of
problems are the key multi-processor problems which affect the efficiency of a multi-processor. For a
multi-processor to function optimally, strategies for control, partitioning, scheduling, synchronization,
and memory access must be tuned to the type of multi-processor used (e.g. multi-computer) and the
application for which it is used (e.g. AUV systems).

Programming languages, programming paradigms, and processing architectures which express
parallelism (i.e. concurrency) are becoming more common. High-level languages (HLLs) such as Ada and
Occam incorporate multi-tasking primitives in the languages [Booch 83; Pountain 86]. Multi-tasking
extensions have been added to HLLs such as C and Pascal [Cox 89; Gehani 86; Brinch Hansen 75). Object-
oriented programming is a recent programming paradigm which exploits concurrency (i.e. parallel
processing) [Booch 86]. Unfortunately, most of these tools have been developed for and applied to single
CPU multi-tasking systems. Until recently, embeddable multi-processing hardware, such as the hardware
used for the multi-computing tested, has not been commercially available. These previously developed
tools for expressing concurrency can now be applied to truly concurrent processors. Using the available
tools to express parallel algorithms will provide the experience necessary for developing similar tools
tailored to AUV technology.

The tested also provides experience with the problems which affect the performance of the multi-
computing hardware. These problems are associated with the efficiency of the hardware. The key
problems are control, partitioning, scheduling, synchronization, and memory access. The following
discussion of these problems is primarily from Gajski and Peir [Gajski 85].

Multi-computers are Multiple Instruction Multiple Data path (MIMD) machines. A process is the
most primitive processing unit controlled (i.e. managed) by a multi-computer. For system organization,
many tradeoffs exist for determining how processes are organized into the higher level structures called
tasks and jobs. How an application is represented as a collection of jobs, tasks, and processes, impacts what
processing structures can be manipulated and managed by a multi-computing system.

The partitioning problem can be divided into two subproblems: parallelism detection and
clustering. Parallelism detection determines all possible parallelism in a program to maximize execution
speed. Clustering combines several operations into a task and partitions a program into many tasks to
increase the throughput or the efficiency of the machine. Although partitioning embodies these two
distinct ideas, they are usually performed together by the user, the compiler, or the machine at run time.

Scheduling is vaguely defined as a function that assigns jobs to processors. For the NOSC multi-
computing testbed, each computing node has its own multi-tasking scheduler. All processes will be
statically allocated or loaded into the array before program execution. This is called static load balancing
and will be a first step toward developing efficient load balancing techniques.



The multi-computing testbed applications will be concerned with synchronization methods for
coordinating parallel execution of tasks and processes. The overhead required to synchronize two ormore
processes directly effects real-time performance.

Finally, the interconnection network in a multiprocessor plays a crucial role in system
performance. Multi-computers have fast local memory access within a processing node while slower non-
local memory access is performed by hardwired message passing between nodes. This type of memory
access constrains the types of algorithms that can be used efficiently. The limitations and advantages of
multi-computing will be noted as experience progresses.

Because reliability is another key feature for real-time systems, fault tolerant multi-computing
architectures will need to be considered. For multi-processing, fault tolerance usually means some form
of redundant processing. How to exploit redundancy for improved reliability is a key problem.

Each of the above mentioned problems directly effect the real-time performance of a parallel
processor. None of the problems can be considered independent of the others. For the useful
demonstration of a distributable software architecture, that architecture must successfully demonstrate
that it addresses these key multi-processing problems. The multi-computing testbed provides this kind
of demonstration capability.

CONFIGURATION OF THE MULTI-COMPUTING TESTBED

The hardware design of the multi-computing testbed was constrained by the physical dimensions
of the EAVE-West electronics bottle (length 46 in. and diameter 7 in.). With this design constraint, a
design configuration was developed for an IBM-AT compatible passive backplane that would optimize
the number of electronics cards that could be housed in the given cylinder. The design consists of two
5-slot passive backplanes one of which is shown in figure 11. This design provides flexibility formission
specific applications. Two application configurations each containing its own CPU may be configured
on the two independent AT passive backplanes. An interconnecting cable between the two backplanes
may also be used to provide a 10 slot configuration. Initially, the AT bottle was configured as two
independent 5 slot backplanes with the aft backplane containing the following cards: 80286 single-board
computer with 512K RAM, 40Mbyte hardcard, video frame grabber, RS232 interface card, and a CGA
video display card. This initial configuration was used to demonstrate the onboard execution of a vision-
based cable detection and tracking system developed in-house [Nguyen 88ab]. Figure 12 is a photo of the
components for this configuration.

For in-water testbed demonstrations, the transputer cards are placed in the forward backplane with
the fiber optics communication card. The aft backplane is populated with a single board computer,
40Mbyte hardcard, transputer-to-host interface card, high speed transputer-to-sensor interface card, and,
finally, a analog-to-digital (A/D) card or video frame grabber (figure 13). The (A/D) and video frame
grabber cards use a high speed sensor interface that connects to the transputer-to-sensor interface card
developed in-house [Symanski 88]. All of the cards fit in the EAVE-West electronics bottle allowing near
term in-water demonstrations.

For in-lab software development, the array is hosted by a Sun 386i workstation (figure 14). A C
compiler with multi-processing extensions provides a portable high level language. C was chosen because
of its portability and common usage. C programs have been ported to the array for initial demonstration
and, consequently, much initial labor has been saved. Parallelized versions of the norted software are
currently under development.
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5-slot passive backplane
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Sun 386i host workstation



APPL IC., FIONS

The first application for the multi-computer testbed has been to map ANN models onto the array
for demonstration of real-time ANN execution aboard a testbed vehicle. Two ANN models are being
implemented. The first ANN model is a back-propagation ANN with Dynamic Node Creation [Ash 89]
and the second is a visual motion detection ANN developed in-house [Blackburn 89). Both models were
previously implemented for a single CPU and written in C.

The second application is a follow-on to the Plan Execution System and it is in a preliminary
stage. Development of an extensible supervisory controlled vehicle system, based on distributable
software primitives called events, is under investigation by Srivastava et al. [Zheng 89]. An event based
plan representation language is to be incorporated in the telemetry system and this language will provide
mission command capability.

Sonar signal processing, acoustic communications, and real-time video image processing have

been considered for the future. Developing and demonstrating the current parallel processing applications
will provide valuable experience for those future needs.

CONCLUSION

Real-time response is the most critical parameter of real-time systems. An AUV system must
address this fundamental problem of real-time response and employ a processing architecture which
scales with the complexity of an AUV mission.For the design and evaluation of scalable AUVprocessing
architectures, NOSC has a technology development program based on in-water testbed demonstrations.
Presently, the multi-computer is being embedded in the EAVE-West AT bottle to address anticipated
multi-computing problems and evaluate architectures for AUVs, such as the plan execution system.
Experience gained with the multi-computing testbed will provide a foundation for extensible vehicle
systems with standardized processing architectures most appropriate for AUV applications.
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